46 research outputs found

    To form a union without having a child. The lengthening of the initial period of life in union before parenthood. A study based on European FFS data

    Get PDF
    Comunicació presentada a l'European Population Conference: "Migration and Migrants in Europe"(Sessió 53). Organitzat per l'European Association for Population Studies (EAPS); Centre d'Estudis Demogràfics. Barcelona, del 9 al 12 de juliol de 2008.The authors of the Second Demographic Transition scheme single out the postponement of the age at first childbearing as the main effect of the changes in habits of young adults associated with this transition. This postponement is accompanied by an increase in the length of the initial period of life in partnership when the couple has no plan yet to have children. This change is made possible by the use of contraceptive means by people living in partnerships in order to delay first childbearing. This is in sharp contrast with the First Demographic Transition, which was also characterized by the extension of the use of contraceptive means, but only after the birth of children. So contraception was used then to control fertility, when it is used nowadays to extend the period of life when no irreversible decisions, like having a child, have been made yet. In this work, we study various dimensions of this postponement of childbearing by couples. First, we try to quantify the magnitude of the increase in the duration of this initial period, when the couple delays parenthood. Second we have a look at the way this change in fertility behaviours in the first years of union change the duration model that was typical at the end of the First Demographic Transition. Finally, we investigate the possible determinants of the increase of this initial period using data on time spent by women studying and working, and of the transition from cohabitation to marriage. We use data from Fertility and Families Surveys for 17 countries and apply life table techniques and proportional hazard modelling.Un dels principals canvis associats a la Segona Transició Demogràfica és el retard en l'edat de tenir el primer fill, allargant-se el període d'unió sense plans de tenir-los. El retard és possible gràcies a la utilització dels mitjans anticonceptius, fet que contrasta amb la Primera Transició Demogràfica, a on els mitjans anticonceptius s'empraven després del naixement dels fills. En aquest estudi s'analitzen les diverses dimensions d'aquest ajornament. En primer lloc, es quantifica l'augment temporal d'aquest període inicial sense fills; en segon lloc s'analitza la forma en què aquest canvi modifica el model de la Primera Transició Demogràfica; finalment, s'apunten possibles determinants, emprant dades sobre el temps dedicat per les dones a estudiar i a treballar, i de la transició de la cohabitació al matrimoni. La font bàsica d'informació és la Fertility and Families Surveys , per a 17 països.Uno de los principales cambios asociados a la Segunda Transición Demográfica, es el aplazamiento en la edad de tener el primer hijo, ampliándose el período de unión sin planes de tenerlos. La demora es posible gracias a la utilización de los medios anticonceptivos, hecho que contrasta con la Primera Transición Demográfica, donde los medios anticonceptivos se utilizaban después del nacimiento de los hijos. En este estudio se analizan las dimensiones de este aplazamiento. En primer lugar, se cuantifica el aumento temporal de esta etapa inicial sin hijos; en segundo lugar, se analiza la forma en que este cambio modifica el modelo de la Primera Transición Demográfica; finalmente, se apuntan posibles determinantes utilizando datos sobre el tiempo dedicado por las mujeres a estudiar y a trabajar, y de la transición de la cohabitación al matrimonio. La fuente básica de información es la Fertility and Families Surveys, para 17 países

    Photo-induced halide redistribution in organic-inorganic perovskite films.

    Get PDF
    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance

    The role of hole transport between dyes in solid-state dye-sensitized solar cells

    Get PDF
    In dye-sensitized solar cells (DSSCs) photogenerated positive charges are normally considered to be carried away from the dyes by a separate phase of hole-transporting material (HTM). We show that there can also be significant transport within the dye monolayer itself before the hole reaches the HTM. We quantify the fraction of dye regeneration in solid-state DSSCs that can be attributed to this process. By using cyclic voltammetry and transient anisotropy spectroscopy, we demonstrate that the rate of interdye hole transport is prevented both on micrometer and nanometer length scales by reducing the dye loading on the TiO<sub>2</sub> surface. The dye regeneration yield is quantified for films with high and low dye loadings (with and without hole percolation in the dye monolayer) infiltrated with varying levels of HTM. Interdye hole transport can account for >50% of the overall dye regeneration with low HTM pore filling. This is reduced to about 5% when the infiltration of the HTM in the pores is optimized in 2 μm thick films. Finally, we use hole transport in the dye monolayer to characterize the spatial distribution of the HTM phase in the pores of the dyed mesoporous TiO<sub>2</sub>

    Carriers trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells

    Get PDF
    One of the greatest attributes of metal halide perovskite solar cells is their surprisingly low loss in potential between bandgap and open-circuit voltage, despite the fact that they suffer from a non-negligible density of sub gap defect states. Here, we use a combination of transient and steady state photocurrent and absorption spectroscopy to show that CH3NH3PbI3 films exhibit a broad distribution of electron traps. We show that the trapped electrons recombine with free holes unexpectedly slowly, on microsecond time scales, relaxing the limit on obtainable Open-Circuit Voltage (Voc) under trap-mediated recombination conditions. We find that the observed VOCs in such perovskite solar cells can only be rationalized by considering the slow trap mediated recombination mechanism identified in this work. Our results suggest that existing processing routes may be good enough to enable open circuit voltages approaching 1.3 V in ideal devices with perfect contacts

    High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors.

    Get PDF
    The study of the photophysical properties of organic-metallic lead halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photogeneration and recombination mechanism and unravels their potential for other optoelectronic applications. We report surprisingly high photoluminescence (PL) quantum efficiencies, up to 70%, in these solution-processed crystalline films. We find that photoexcitation in the pristine CH3NH3PbI3-xClx perovskite results in free charge carrier formation within 1 ps and that these free charge carriers undergo bimolecular recombination on time scales of 10s to 100s of ns. To exemplify the high luminescence yield of the CH3NH3PbI3-xClx perovskite, we construct and demonstrate the operation of an optically pumped vertical cavity laser comprising a layer of perovskite between a dielectric mirror and evaporated gold top mirrors. These long carrier lifetimes together with exceptionally high luminescence yield are unprecedented in such simply prepared inorganic semiconductors, and we note that these properties are ideally suited for photovoltaic diode operation.We thank the Engineering and Physical Sciences Research Council, and the Winton Programme (Cambridge) for the Physics of Sustainability for funding. M.P. wants to thank the Cambridge Commonwealth Trust and the Rutherford Foundation of New Zealand for funding.This is the final version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/jz5005285

    Perovskite-perovskite tandem photovoltaics with optimized bandgaps

    Full text link
    We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3, that can deliver 14.8 % efficiency. By combining this material with a wider bandgap FA0.83Cs0.17Pb(I0.5Br0.5)3FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3 material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable 'all perovskite' thin film solar cells to reach the highest efficiencies in the long term at the lowest costs

    Charge transport in disordered semiconductors in solid state sensitized solar cells: influence on performance and stability

    No full text
    This thesis studies parameters influencing both the performance and stability of solid state sensitized solar cells (ssSSCs). ssSSCs benefit from their low materials and manufacturing processing costs, a consequence of using solution processed materials. However, solution processed materials are often structurally and electronically disordered. By characterizing fully operational ssSSCs and their charge transport properties, this thesis elucidates the factors limiting charge transport and proposes routes towards both improved photovoltaic conversion efficiency and long-term stability. Chapter 2 provides an explanation of the operation of ssSSCs, while Chapter 3 discusses the basic methods used in this thesis. Having set this background, Chapter 4 explores the interaction between atmospheric oxygen and charge doping mechanisms in the organic semiconductors used in ssSSCs. To understand the implications of the findings presented in Chapter 4, a new technique, “transient mobility spectroscopy”, was developed to understand the evolution of balanced charge transport behaviour of disordered semiconductors at different operating conditions in ssSSCs. This technique is presented in full in Chapter 5. The understanding gained in Chapters 4 and 5 suggest that alternative light absorbers with higher extinction coefficients may be beneficial to improving the performance of ssSSCs. Chapter 6 discusses the use of an organometal trihalide perovskite, as light absorber in ssSSCs. Using time resolved techniques, the charge transport and recombination mechanisms in various device architectures are explored, allowing suggestions to be made towards future improvements. Chapter 7 uses the technique presented in Chapter 5 to understand a rapid degradation mechanism of working ssSSCs. Particular focus is placed on the titanium dioxide charge-transporting layer. Building on this newfound understanding, two methods for attaining stable photovoltaic performance are provided, a great step forward for this technology.</p

    Charge transport in disordered semiconductors in solid state sensitized solar cells: influence on performance and stability

    No full text
    This thesis studies parameters influencing both the performance and stability of solid state sensitized solar cells (ssSSCs). ssSSCs benefit from their low materials and manufacturing processing costs, a consequence of using solution processed materials. However, solution processed materials are often structurally and electronically disordered. By characterizing fully operational ssSSCs and their charge transport properties, this thesis elucidates the factors limiting charge transport and proposes routes towards both improved photovoltaic conversion efficiency and long-term stability. Chapter 2 provides an explanation of the operation of ssSSCs, while Chapter 3 discusses the basic methods used in this thesis. Having set this background, Chapter 4 explores the interaction between atmospheric oxygen and charge doping mechanisms in the organic semiconductors used in ssSSCs. To understand the implications of the findings presented in Chapter 4, a new technique, “transient mobility spectroscopy”, was developed to understand the evolution of balanced charge transport behaviour of disordered semiconductors at different operating conditions in ssSSCs. This technique is presented in full in Chapter 5. The understanding gained in Chapters 4 and 5 suggest that alternative light absorbers with higher extinction coefficients may be beneficial to improving the performance of ssSSCs. Chapter 6 discusses the use of an organometal trihalide perovskite, as light absorber in ssSSCs. Using time resolved techniques, the charge transport and recombination mechanisms in various device architectures are explored, allowing suggestions to be made towards future improvements. Chapter 7 uses the technique presented in Chapter 5 to understand a rapid degradation mechanism of working ssSSCs. Particular focus is placed on the titanium dioxide charge-transporting layer. Building on this newfound understanding, two methods for attaining stable photovoltaic performance are provided, a great step forward for this technology

    Charge transport in disordered semiconductors in solid state sensitized solar cells: influence on performance and stability

    No full text
    This thesis studies parameters influencing both the performance and stability of solid state sensitized solar cells (ssSSCs). ssSSCs benefit from their low materials and manufacturing processing costs, a consequence of using solution processed materials. However, solution processed materials are often structurally and electronically disordered. By characterizing fully operational ssSSCs and their charge transport properties, this thesis elucidates the factors limiting charge transport and proposes routes towards both improved photovoltaic conversion efficiency and long-term stability. Chapter 2 provides an explanation of the operation of ssSSCs, while Chapter 3 discusses the basic methods used in this thesis. Having set this background, Chapter 4 explores the interaction between atmospheric oxygen and charge doping mechanisms in the organic semiconductors used in ssSSCs. To understand the implications of the findings presented in Chapter 4, a new technique, “transient mobility spectroscopy”, was developed to understand the evolution of balanced charge transport behaviour of disordered semiconductors at different operating conditions in ssSSCs. This technique is presented in full in Chapter 5. The understanding gained in Chapters 4 and 5 suggest that alternative light absorbers with higher extinction coefficients may be beneficial to improving the performance of ssSSCs. Chapter 6 discusses the use of an organometal trihalide perovskite, as light absorber in ssSSCs. Using time resolved techniques, the charge transport and recombination mechanisms in various device architectures are explored, allowing suggestions to be made towards future improvements. Chapter 7 uses the technique presented in Chapter 5 to understand a rapid degradation mechanism of working ssSSCs. Particular focus is placed on the titanium dioxide charge-transporting layer. Building on this newfound understanding, two methods for attaining stable photovoltaic performance are provided, a great step forward for this technology.This thesis is not currently available in OR
    corecore